Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression.
نویسندگان
چکیده
Wave-breaking often occurs when a short intense optical pulse propagates in a long normally dispersive optical fiber. This effect has conventionally been avoided in fiber (super-)continuum-based pulse compression because the accumulated frequency chirp of the output pulse cannot be fully compensated by a standard prism (or grating) pair. Thus, the spectral extending capability of the wave-breaking has not been utilized to shorten the compressed pulse. We demonstrate that wave-breaking-free operation is not necessary if a 4f pulse shaper-based compressor is employed to remove both the linear and nonlinear chirp of the output pulse. By propagating a 180 fs (FWHM) input pulse in a nonlinear photonic crystal fiber beyond the wave-breaking limit, we compress the wave-breaking-extended supercontinuum output pulse to the bandwidth-limited duration of 6.4 fs (FWHM). The combination of high compression ratio (28×) and short pulse width represents a significant improvement over that attained in the wave-breaking-free regime.
منابع مشابه
Wave-Breaking Extended Coherent Fiber: Supercontinuum Pulse Compression.
L ike surface water wave breaking, optical wave breaking (WB) is a phenomenon that occurs when an optical pulse propagates in a normally dispersive nonlinear fiber. It is often avoided in fiber continuum compression experiments by using lower coupling power or shorter fiber length, because the WB-extended continuum has higher-order spectral phase distortions that cannot be compensated by a quad...
متن کاملSquare Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm
In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric split-step Fourier (SSF) and fourth order Runge Kutta (RK4) which is an accurate method to solve the general nonlinear...
متن کاملSupercontinuum-based 10-GHz flat-topped optical frequency comb generation.
The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole available bandwidth. Here we present a...
متن کاملCompression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus.
A multiphoton intrapulse interference phase scan (MIIPS) adaptively and automatically compensates the combined phase distortion from a fiber supercontinuum source, a spatial light modulator pulse shaper, and a high-NA microscope objective, allowing Fourier-transform-limited compression of the supercontinuum pulses at the focus of the objective. A second-harmonic-generation-based method is emplo...
متن کاملSupercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses.
Supercontinuum generation in a highly nonlinear fiber pumped by noise-like pulses from an erbium-doped fiber ring laser is investigated. To generate ultrabroad spectra, a fiber amplifier is used to boost the power launched into the highly nonlinear fiber. After amplification, not only the average power of the noise-like pulses is enhanced but the spectrum of the pulses is also broadened due to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 37 12 شماره
صفحات -
تاریخ انتشار 2012